Novel drug development is onerous, time consuming and overpriced process with particularly low success and relatively high enfeebling rates. To overcome this burden, drug repositioning approach is being used to predict the possible therapeutic effects of FDA approved drugs in different diseases. Herein, we designed a computational and enzyme inhibitory mechanistic approach to fetch the promising drugs from the pool of FDA approved drugs against AD. The binding interaction patterns and conformations of screened drugs within active region of AChE were confirmed through molecular docking profiles. The possible associations of selected drugs with AD genes were predicted by pharmacogenomics analysis and confirmed through data mining. The stability behaviour of docked complexes (Drugs-AChE) were checked by MD simulations. The possible therapeutic potential of repositioned drugs against AChE were checked by in vitro analysis. Taken together, Cinitapride displayed a comparable results with standard and can be used as possible therapeutic agent in the treatment of AD.
Keywords: Acetylcholinesterase; Alzheimer’s disease; Drug-repositioning; Enzyme kinetics; Molecular docking.
Copyright © 2018. Published by Elsevier Masson SAS.