Triarylmethane Fluorophores Resistant to Oxidative Photobluing

J Am Chem Soc. 2019 Jan 16;141(2):981-989. doi: 10.1021/jacs.8b11036. Epub 2019 Jan 2.

Abstract

Spectral stability of small-molecule fluorescent probes is required for correct interpretation and reproducibility of multicolor fluorescence imaging data, in particular under high (de)excitation light intensities of super-resolution imaging or in single-molecule applications. We propose a synthetic approach to a series of spectrally stable rhodamine fluorophores based on sequential Ru- and Cu-catalyzed transformations, evaluate their stability against photobleaching and photoconversion in the context of other fluorophores using chemometric analysis, and demonstrate chemical reactivity of fluorophore photoproducts. The substitution patterns providing the photoconversion-resistant triarylmethane fluorophores have been identified, and the applicability of nonbluing labels in live-cell STED nanoscopy is demonstrated.

Publication types

  • Research Support, Non-U.S. Gov't