Three-component Mannich reaction of acetophenone or 4-iodoacetophenone with a variety of substituted anilines and benzaldehyde, catalysed with diethanolammonium chloroacetate, was performed under mild conditions. Mannich bases (MBs), of which five are new, were obtained in good to excellent yields. All compounds were characterized using elemental analysis, NMR and IR. In addition, detailed experimental and simulated UV-Vis spectral characterization of these compounds is presented here for the first time. In vitro antioxidative potential of synthetized MBs was evaluated using 2,2-diphenyl-1-picryl-hydrazyl radical and density functional theory (DFT) thermodynamical study. It was shown that compounds with anisidine moiety express moderate antioxidative activity. Mechanism of the organocatalysed Mannich reaction was thoroughly inspected by means of DFT. The reaction undergoes the hydrogen bonding-assisted mechanism. Moreover, the proposed rate determining step of the overall reaction is water elimination in the process of iminium ion formation. To the extent of our knowledge, this is the first detailed report on the influence of this type of catalyst on the formation of iminium ion, as a crucial intermediate for the whole reaction.
Keywords: density functional theory; ionic liquids; organocatalysis; radical scavenging mechanisms; reaction mechanism; spectral characterization.