A Set of Conventional and Multiplex Real-Time PCR Assays for Direct Detection of Elsinoë fawcettii, E. australis, and Pseudocercospora angolensis in Citrus Fruits

Plant Dis. 2019 Feb;103(2):345-356. doi: 10.1094/PDIS-05-18-0798-RE. Epub 2018 Dec 19.

Abstract

Elsinoë fawcettii, E. australis, and Pseudocercospora angolensis are causal agents of citrus scab and spot diseases. The three pathogens are listed as quarantine pests in many countries and are subject to phytosanitary measures to prevent their entry. Diagnosis of these diseases based on visual symptoms is problematic, as they could be confused with other citrus diseases. Isolation of E. fawcettii, E. australis, and P. angolensis from infected tissues is challenging because they grow slowly on culture media. This study developed rapid and specific detection tools for the in planta detection of these pathogens, using either conventional PCR or one-tube multiplex real-time PCR. Primers and hybridization probes were designed to target the single-copy protein-coding gene MS204 for E. fawcettii and E. australis and the translation elongation factor (Tef-1α) gene for P. angolensis. The specificity of the assays was evaluated by testing against DNA extracted from a large number of isolates (102) collected from different citrus-growing areas in the world and from other hosts. The newly described species E. citricola was not included in the specificity test due to its unavailability from the CBS collection. The detection limits of conventional PCR for the three pathogens were 100, 100, and 10 pg μl-1 gDNA per reaction for E. fawcettii, E. australis, and P. angolensis, respectively. The quadruplex qPCR was fully validated assessing the following performance criteria: sensitivity, specificity, repeatability, reproducibility, and robustness. The quadruplex real-time PCR proved to be highly sensitive, detecting as low as 243, 241, and 242 plasmidic copies (pc) μl-1 of E. fawcettii, E. australis, and P. angolensis, respectively. Sensitivity and specificity of this quadruplex assay were further confirmed using 176 naturally infected citrus samples collected from Ethiopia, Cameroon, the United States, and Australia. The quadruplex assay developed in this study is robust, cost-effective, and capable of high-throughput detection of the three targets directly from citrus samples. This new detection tool will substantially reduce the turnaround time for reliable species identification and allow rapid response and appropriate action.

MeSH terms

  • Ascomycota* / genetics
  • Ascomycota* / physiology
  • Citrus* / microbiology
  • Fruit* / microbiology
  • Genes, Fungal / genetics
  • Plant Diseases / microbiology
  • Real-Time Polymerase Chain Reaction*
  • Reproducibility of Results