High-attenuation materials pose significant challenges to computed tomographic imaging. Formed of high mass-density and high atomic number elements, they cause more severe beam hardening and scattering artifacts than do water-like materials. Pre-corrected line-integral density measurements are no longer linearly proportional to the path lengths, leading to reconstructed image suffering from streaking artifacts extending from metal, often along highest-density directions. In this paper, a novel prior-based iterative approach is proposed to reduce metal artifacts. It combines the superiority of statistical methods with the benefits of sinogram completion methods to estimate and correct metal-induced biases. Preliminary results show minimized residual artifacts and significantly improved image quality.