Metabolic resistance to insecticides threatens malaria control. However, little is known about its fitness cost in field populations of malaria vectors, thus limiting the design of suitable resistance management strategies. Here, we assessed the association between the glutathione S-transferase GSTe2-mediated metabolic resistance and life-traits of natural populations of Anopheles funestus. A total of 1200 indoor resting blood-fed female An. funestus (F₀) were collected in Mibellon, Cameroon (2016/2017), and allowed to lay eggs individually. Genotyping of F1 mosquitoes for the L119F-GSTE2 mutation revealed that L/L119-homozygote susceptible (SS) mosquitoes significantly laid more eggs than heterozygotes L119F-RS (odds ratio (OR) = 2.06; p < 0.0001) and homozygote resistant 119F/F-RR (OR = 2.93; p < 0.0001). L/L119-SS susceptible mosquitoes also showed the higher ability for oviposition than 119F/F-RR resistant (OR = 2.68; p = 0.0002) indicating a reduced fecundity in resistant mosquitoes. Furthermore, L119F-RS larvae developed faster (nine days) than L119F-RR and L119F-SS (11 days) (X² = 11.052; degree of freedom (df) = 4; p = 0.02) suggesting a heterozygote advantage effect for larval development. Interestingly, L/L119-SS developed faster than 119F/F-RR (OR = 5.3; p < 0.0001) revealing an increased developmental time in resistant mosquitoes. However, genotyping and sequencing revealed that L119F-RR mosquitoes exhibited a higher adult longevity compared to RS (OR > 2.2; p < 0.05) and SS (OR > 2.1; p < 0.05) with an increased frequency of GSTe2-resistant haplotypes in mosquitoes of D30 after adult emergence. Additionally, comparison of the expression of GSTe2 revealed a significantly increased expression from D1-D30 after emergence of adults (Anova test (F) = 8; df= 3; p = 0.008). The negative association between GSTe2 and some life traits of An. funestus could facilitate new resistance management strategies. However, the increased longevity of GSTe2-resistant mosquitoes suggests that an increase in resistance could exacerbate malaria transmission.
Keywords: Anopheles funestus; L119F-GSTE2; fitness cost; glutathione S-transferase; malaria; metabolic resistance; vector control.