miR-93-5p may be an important oncogene in prostate cancer by bioinformatics analysis

J Cell Biochem. 2019 Jun;120(6):10463-10483. doi: 10.1002/jcb.28332. Epub 2018 Dec 23.

Abstract

Introduction: Prostate adenocarcinoma is one of the most prevalent causes of cancer-related deaths in males worldwide. However, the underlying mechanisms remain poorly understood. Hence, it is important to identify specific and effective therapeutic targets, to be able to determine appropriate therapy and management. So, this study aimed to predict that miR-93-5p is an important oncogene in prostate cancer by bioinformatics analysis.

Methods: In this study, initially we identified differentially expressed genes (DEGs) and differently expressed miRNAs (DEMs) in the The Cancer Genome Atlas (TCGA) database, performed Gene Ontology (GO) and pathway enrichment analysis, then investigated the relationship between DEGs and DEMs, and finally through consulting the literature and retrieving the database, we found that miR-93-5p may play a major role in prostate cancer, so we predicted the expression and survival of miR-93-5p and its isomers by bioinformatics analysis, meanwhile, evaluated the function of miR-93-5p in vitro.

Results: In total, 104 DEMs were differently expressed between prostate cancer and normal samples, including 56 downregulated ones and 48 upregulated ones; miR-93-5p (upregulated) was identified as a good biomarker. And 1904 DEGs were retrieved, including 794 downregulated ones and 1110 upregulated ones. We also obtained 1254 DEGs of the DEMs. In GO and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, the significantly enriched pathways involved pathway in focal adhesion, vascular smooth muscle contraction, and regulation of actin cytoskeleton. By the KEGG pathway, we got 16 target genes and 92 pathways of the miR-93-5p in prostate cancer. We also found that the miR-93-5p and its isomers can express in prostate cancer, and which with a high expression had a poor overall survival and a significant difference recurrence rate within 5 years. Further in vitro verification results demonstrated that the low expression of miR-93-5p can inhibit cell proliferation, migration, invasion, change cell cycle, and promote early apoptosis of PC-3 cells.

Conclusion: The miR-93-5p and its target genes were used to define important molecular targets that could serve as a prognostic and predictive marker in the treatment of prostate cancer. Further research on the function of the miR-93-5p and its target genes in the KEGG pathway could provide references for the treatment of prostate cancer.

Keywords: Kyoto Encyclopedia of Genes and Genomes pathways; The Cancer Genome Atlas analysis; bioinformatics analysis; differentially expressed miRNAs and genes; miR-93-5p; prostate adenocarcinoma.

MeSH terms

  • Adenocarcinoma / genetics*
  • Adenocarcinoma / mortality
  • Adenocarcinoma / pathology
  • Cell Line, Tumor
  • Gene Expression Regulation, Neoplastic*
  • Humans
  • Male
  • MicroRNAs / genetics*
  • Molecular Sequence Annotation
  • Oncogenes
  • Prognosis
  • Prostatic Neoplasms / genetics*
  • Prostatic Neoplasms / mortality
  • Prostatic Neoplasms / pathology
  • Survival Rate

Substances

  • MIRN93 microRNA, human
  • MicroRNAs