A noninvasive, highly sensitive universal immunosensor platform for protein-based biomarker detection is described in this Article. A neutral charged sensing environment is constructed by an antibody with an oppositely charged amino acid as surface charge neutralizer. By adjusting the pH condition of the testing environment, this neutral charged immunosensor (NCI) directly utilizes the electrostatic charges of the analyte for quantification of circulating protein markers, achieving a wide dynamic range covering through the whole picomole level. Comparing with previous studies on electrostatic charges characterization, this NCI demonstrates its capability to analyze not only the negatively charged biomolecules but also positively charged analytes. We applied this NCI for the detection of HE4 antigen with a detection limit at 2.5 pM and Tau antigen with a detection limit at 0.968 pM, demonstrating the high-sensitivity property of this platform. Furthermore, this NCI possesses a simple fabrication method (less than 2 h) and a short testing turnaround time (less than 30 min), providing an excellent potential for further clinical point-of-care applications.
Keywords: electrochemistry; electrostatic charge interaction; point-of-care; universal antigen detection method; universal biosensor.