HBV reactivation could be induced under immunosuppressive conditions in patients with resolved infection. This study aimed to clarify the viral factors associated with the pathogenesis of HBV reactivation in association with the immunosuppressive status. Whole HBV genome sequences were determined from the sera of 24 patients with HBV reactivation, including 8 cases under strong immunosuppression mediated by hematopoietic stem cell transplantation (HSCT) and 16 cases without HSCT. Ultra-deep sequencing revealed that the prevalence of genotype B and the ratio of non-synonymous to synonymous evolutionary changes in the surface (S) gene were significantly higher in non-HSCT cases than in patients with HSCT. Those non-synonymous variants included immune escape (6/16 cases) and MHC class II-restricted T-cell epitope variants (6/16 cases). Furthermore, reactivated HBV in 11 of 16 (69%) non-HSCT cases possessed substitutions associated with impaired virion secretion, including E2G, L77R, L98V, T118K, and Q129H in the S region, and M1I/V in the PreS2 region. In conclusion, virologic features of reactivated HBV clones differed depending on the intensity of the immunosuppressive condition. HBV reactivation triggered by immunosuppressive conditions, especially those without HSCT, was characterized by the expansion of variants associated with immune escape, MHC class II-restricted T-cell epitope alterations, and/or impaired virion secretion.