Ojective: To investigate respiratory health problems related to pesticide exposure in the inhabitants of agricultural areas.
Material and methods: This study included 252 participants prior to pesticide application and 66 participants from the first group after pesticide application across four cotton farms. Symptom questionnaires were filled out by participants and respiratory function tests were measured before and after pesticide exposure. In addition, PM10, PM2.5, air temperature, and humidity were measured in all four farming villages before and after pesticide administration.
Results: PM10 and PM2.5 levels were significantly increased after pesticide application. After pesticide application, all participants' nose, throat, eye, and respiratory complaints increased significantly. Expected forced vital capacity (FVC) and forced expiratory volume in one second (FEV1) percentage values decreased significantly. The rates of FVC and FEV1 values lower than 80% were 23.5% and 22%, espectively, before pesticide application, and this rate increased to 42.4% and 43.1%, respectively, after pesticide application. There was a significant negative correlation between PM10 levels and FVC, FEV1, and PEF values. After PM2.5 pesticide application, the risk of experiencing burning in the mouth, nose, and throat increased by 2.3-fold (OR: 2.316), 2.6-fold for burning symptoms in the eyes (OR: 2.593), 2.1-fold for wheezing (OR: 2.153), and 2.2-fold for chest tightness (OR: 2.211). With increased PM10 levels, the risk of chest tightness increased 1.1-fold (OR: 1.123).
Conclusions: After pesticide administration, the respiratory health of the participants deteriorated. Performing pesticide applications in agriculture with harmless methods is the most important measure to be taken to protect public health.
Keywords: PM10; PM2.5; pesticides; pulmonary functions; respiratory symptoms.