Chemerin acts as a chemotactic factor for leukocyte populations expressing the G protein-coupled receptor CMKLR1 (ChemR23). It is also an adipocytokine involved in obesity and metabolic syndromes. Previous studies have demonstrated that chemerin promotes angiogenesis in vitro, although the precise mechanism has not been elucidated. In this study, we have investigated whether chemerin regulates angiogenic processes and validated the associated mechanisms. In this study, chemerin stimulated angiogenesis in mice, which was demonstrated using Matrigel plug implantation assay, mouse corneal models of angiogenesis, and ex vivo rat aortic ring assay. To explore the mechanisms by which chemerin induced angiogenesis, we examined the effects of chemerin in human umbilical vein endothelium cells (HUVECs). Chemerin stimulated the differentiation of HUVECs into capillary-like structures, promoted the proliferation of HUVECs, and functioned as a chemoattractant in migration assays. Chemerin induced the phosphorylation of Akt and p42/44 extracellular signal-regulated kinase (ERK) in HUVECs and chemerin promotes angiogenesis via Akt and ERK. SiRNA against the chemerin receptor CMKLR1 but not that against another chemerin receptor, CCRL2, completely inhibited the chemerin-induced migration and angiogenesis of HUVECs, which indicates that chemerin promotes the migration and angiogenic activities of HUVECs mainly through CMKLR1.
Keywords: Akt PKB; C-C chemokine receptor-like 2(CCRL2); Chemokine-like receptor 1(CMKLR1); angiogenesis; cell migration; chemokine; endothelial cell; extracellular signal-regulated kinase (ERK).
© 2018 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.