Checkpoint blockade therapy has been proven efficacious in lung cancer patients. However, primary/acquired resistance hampers its efficacy. Therefore, there is an urgent need to develop novel strategies to improve checkpoint blockade therapy. Here we tested whether dual inhibition of cyclooxygenase-2 (COX-2) and epidermal growth factor receptor (EGFR) by flavonoid melafolone improves program death 1 (PD-1) checkpoint blockade therapy through normalizing tumor vasculature and PD-1 ligand (PD-L1) downregulation. Virtual screening assay, cellular thermal shift assay, and enzyme inhibition assay identified melafolone as a potential inhibitor of COX-2 and EGFR. In Lewis lung carcinoma (LLC) and CMT167 models, dual inhibition of COX-2 and EGFR by melafolone promoted survival, tumor growth inhibition, and vascular normalization, and ameliorated CD8+ T-cell suppression, accompanied by the downregulation of transforming growth factor-β (TGF-β), vascular endothelial growth factor (VEGF), and PD-L1 in the tumor cells. Mechanistically, dual inhibition of COX-2 and EGFR in lung cancer cells by melafolone increased the migration of pericyte, decreased the proliferation and migration of endothelial cells, and enhanced the proliferation and effector function of CD8+ T cells through VEGF, TGF-β, or PD-L1 downregulation and PI3K/AKT inactivation. Notably, melafolone improved PD-1 immunotherapy against LLC and CMT167 tumors. Together, dual inhibition of COX-2 and EGFR by melafolone improves checkpoint blockade therapy through vascular normalization and PD-L1 downregulation and, by affecting vessels and immune cells, may be a promising combination strategy for the treatment of human lung cancer.
Copyright © 2019 by The American Society for Pharmacology and Experimental Therapeutics.