Modulation of Measles Virus NTAIL Interactions through Fuzziness and Sequence Features of Disordered Binding Sites

Biomolecules. 2018 Dec 27;9(1):8. doi: 10.3390/biom9010008.

Abstract

In this paper we review our recent findings on the different interaction mechanisms of the C-terminal domain of the nucleoprotein (N) of measles virus (MeV) NTAIL, a model viral intrinsically disordered protein (IDP), with two of its known binding partners, i.e., the C-terminal X domain of the phosphoprotein of MeV XD (a globular viral protein) and the heat-shock protein 70 hsp70 (a globular cellular protein). The NTAIL binds both XD and hsp70 via a molecular recognition element (MoRE) that is flanked by two fuzzy regions. The long (85 residues) N-terminal fuzzy region is a natural dampener of the interaction with both XD and hsp70. In the case of binding to XD, the N-terminal fuzzy appendage of NTAIL reduces the rate of α-helical folding of the MoRE. The dampening effect of the fuzzy appendage on XD and hsp70 binding depends on the length and fuzziness of the N-terminal region. Despite this similarity, NTAIL binding to XD and hsp70 appears to rely on completely different requirements. Almost any mutation within the MoRE decreases XD binding, whereas many of them increase the binding to hsp70. In addition, XD binding is very sensitive to the α-helical state of the MoRE, whereas hsp70 is not. Thus, contrary to hsp70, XD binding appears to be strictly dependent on the wild-type primary and secondary structure of the MoRE.

Keywords: IDP; fuzzy interactions; kinetics; protein complementation assays; split-GFP reassembly.

Publication types

  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Amino Acid Sequence
  • Binding Sites
  • HSP70 Heat-Shock Proteins / chemistry
  • HSP70 Heat-Shock Proteins / metabolism
  • Humans
  • Measles virus / metabolism*
  • Mutagenesis
  • Nucleocapsid Proteins
  • Nucleoproteins / chemistry
  • Nucleoproteins / genetics
  • Nucleoproteins / metabolism*
  • Phosphoproteins / chemistry
  • Phosphoproteins / metabolism
  • Protein Binding
  • Protein Structure, Secondary
  • Viral Proteins / chemistry
  • Viral Proteins / genetics
  • Viral Proteins / metabolism*

Substances

  • HSP70 Heat-Shock Proteins
  • Nucleocapsid Proteins
  • Nucleoproteins
  • Phosphoproteins
  • Viral Proteins
  • nucleoprotein, Measles virus