Cryphonectria hypovirus 1 strain CN280 (CHV1-CN280) was isolated from North China and exhibited typical hypovirulence-associated traits. We previously reported that CHV1-CN280 was more aggressive and had a higher horizontal transmission ability between Cryphonectria parasitica isolates belonging to different vegetative compatibility groups than two other CHV1 hypoviruses (namely, CHV1-EP713 and CHV1-Euro7), thus displaying greater potential for biological control of chestnut blight. The genome sequence of CHV1-CN280 shared approximately 70% identity with three other hypoviruses (CHV1-EP713, CHV1-Euro7, and CHV1-EP721). The coding region for p29, a papain-like protease encoded by CHV1-CN280 hypovirus, displayed an average of only approximately 60% amino acid identity among them, while the identity between the other three CHV1 isolates was higher than 89%. Protease p29 acted as a virus-encoded determinant responsible for altering fungal host phenotypes in other CHV1 isolates. In this study, the impacts of CHV1-CN280 p29 expression in virus-free C. parasitica were investigated. CHV1-CN280 p29 expression in C. parasitica resulted in significantly reduced sporulation, pigmentation, extracellular laccase activities, and pathogenicity, which is consistent with previous investigations. Subsequently, the potential of CHV1-CN280 p29 as a viral determinant responsible for suppression of host phenotypes in other phytopathogenic fungi such as Magnaporthe oryzae, the causal agent of rice blast disease, was discussed. However, heterologous expression of p29 in M. oryzae induced the opposite effect on sporulation, extracellular laccase activities, and pathogenicity; had no significant effect on pigmentation and mycelial growth; and contributed to extracellular peroxidase activities, suggesting that CHV1-CN280 p29 may disturb a unique regulatory pathway in C. parasitica, rather than a basic regulatory pathway conserved in diverse range of fungi. Alternatively, CHV1-CN280 p29-mediated modulation of fungal phenotypes may be facilitated by the specific interaction between p29 and a special fungal-host component, which exists only with C. parasitica but not M. oryzae.
Keywords: hypovirulence; papain-like protease p29.