The lambda red recombination system makes it suitable for screening virulence gene utility in avian pathogenic Escherichia coli (APEC) on account of its wide applicability, simplicity and high efficiency. In APEC E058 (O2 serogroup), there are two copies of the outer membrane protease (ompT) gene, compT encoding cOmpT that is located on the chromosome and pompT encoding pOmpT that is located on a ColV plasmid. However, the relationship between pathogenesis and pompT expression in APEC E058 has yet to be elucidated. Here, we successfully constructed two pompT gene mutants: E058ΔpompT containing a chloramphenicol (cat) resistance gene and E058ΔpompT' without the cat gene. By RT-PCR and sequencing analysis, an unexpected transcriptome pompT' was detected in mutant strain E058ΔpompT' after deletion of the cat gene induced by the lambda red recombination system. Surprisingly, the pathogenicity of mutant E058ΔpompT was significantly attenuated compared to its parental strain in the chicken infection model and HD11 cell model then the pompT gene was knocked out, while the pathogenicity of the other mutant strain E058ΔpompT' had no difference. Furthermore, the presence of unexpected transcriptome pompT' influenced the bactericidal activity of SPF chicken serum and decreased the transcription level of TLR2 in the heart tissue of chickens. Our study identifies the pompT gene plays an important role in the virulence of APEC E058, and the unexpected transcriptome pompT' contributes to the increased pathogenicity of APEC E058 mutants following deletion of the cat gene induced by the lambda red recombination system, which suggests that this system still has some limitations for construction of mutant strains particularly where these are used in development of live vaccine.
Keywords: Avian pathogenic Escherichia coli; Chloramphenicol (cat) resistance gene; Lambda red recombination system; Outer membrane protease T located on plasmid (pOmpT); Pathogenicity.
Copyright © 2018 Elsevier B.V. All rights reserved.