To some extent, the use of metformin may improve endometrial receptivity and pregnancy outcomes of women with polycystic ovarian syndrome (PCOS) undergoing in vitro fertilization/intracytoplasmic sperm injection. However, the mechanism is not well-known. The endometrium of metformin-treated group (metformin-treated patients with PCOS) and the control group (non-metformin-treated patients with PCOS) were analyzed for the expression of homeobox A10 (HOXA10) and integrin beta-3 (ITGB3) and differential micro RNA (miRNA) expression profiles. On this basis, miRDB and Target Scan databases were used to predict and screen out that miR-491-3p and miR-1910-3p may target HOXA10 and ITGB3. Furthermore, we verified the effects of metformin on the expression of HOXA10 and ITGB3, and regulatory effects of miR-1910-3p and miR-491-3p on HOXA10 and ITGB3 using Ishikawa cell line. Metformin induced a significant dose-dependent upregulation of HOXA10 and ITGB3. The results from the microarray analyses showed there were 40 differentially expressed miRNAs between the 2 groups. Among them, miR-1910-3p and miR-491-3p were the 2 significantly downregulated miRNAs. Bioinformatics prediction indicated that HOXA10 and ITGB3 are potential target genes for miR-1910-3p and miR-491-3p. In Ishikawa cells transfected with miR-491-3p mimics, the expression of HOXA10 and ITGB3 on both messenger RNA (mRNA) and protein level were lower than those in control group (P < .001). Also, the expression of HOXA10 mRNA and protein was lower in Ishikawa cells transfected with miR-1910-3p mimics (P < .001). However, no significant changes in ITGB3 levels were observed in cells transfected with miR-1910-3p mimics (P > .05). Metformin likely improves endometrial receptivity through downregulating the expression of miR-491-3p and miR-1910-3p, thereby increasing the expression of HOXA10 and ITGB3 in the endometrium of PCOS women.
Keywords: endometrium tissue; in vitro fertilization-embryo transfer (IVF-ET); metformin; microRNA; polycystic ovarian syndrome.