Interfacial Modification in Organic and Perovskite Solar Cells

Adv Mater. 2019 Nov;31(45):e1805708. doi: 10.1002/adma.201805708. Epub 2019 Jan 2.

Abstract

Organic bulk heterojunction solar cells (OSCs) and hybrid halide perovskite solar cells (PSCs) are two promising photovoltaic techniques for next-generation energy conversion devices. The rapid increase in the power conversion efficiency (PCE) in OSCs and PSCs has profited from synergetic progresses in rational material synthesis for photoactive layers, device processing, and interface engineering. Interface properties in these two types of devices play a critical role in dictating the processes of charge extraction, surface trap passivation, and interfacial recombination. Therefore, there have been great efforts directed to improving the solar cell performance and device stability in terms of interface modification. Here, recent progress in interfacial doping with biopolymers and ionic salts to modulate the cathode interface properties in OSCs is reviewed. For the anode interface modification, recent strategies of improving the surface properties in widely used PEDOT:PSS for narrowband OSCs or replacing it by novel organic conjugated materials will be touched upon. Several recent approaches are also in focus to deal with interfacial traps and surface passivation in emerging PSCs. Finally, the current challenges and possible directions for the efforts toward further boosts of PCEs and stability via interface engineering are discussed.

Keywords: device physics; interfacial modification; organic solar cells; perovskite solar cells; surface traps.

Publication types

  • Review