Aim: The current study was aimed to determine the relationship between the orthodontic force applied by monobloc and the salivary level of alkaline phosphatase (ALP) and lactate dehydrogenase (LDH) enzymes, considering the time factor after insertion of the appliance and whether there is a correlation between these enzymes.
Materials and methods: A sample of 28 growing patients requiring orthodontic treatment with myofunctional appliance (Monoblock) was taken for the current study with an age range 9 to 12 years,all patients had Angle's class II division 1 mal-occlusion with no or mild crowding, the sample was selected using simple random sampling. Only 16 subjects (10 males and 6 females) were included who follow certain inclusion criteria. Unstimulated saliva was collected from the patients before monoblock insertion, then 1 hour after insertion, followed by 14 days and 28 days. Salivary levels of ALP and LDH were measured using a spectrophotometer and compared with the base line.
Results: The results revealed that ALP and LDH levels increased with increasing time after monoblock insertion, and there was the statistically insignificant difference after 1-hour post-insertion for ALP enzyme level, but highly significant after 14 and 28 days. While for LDH level,there was the statistically significant difference after 1-hour post-insertion, but highly significant difference after 14 and 28 days post-insertion. In this regard to the relation between salivary ALP and LDH enzymes levels at different time intervals, showed that there were no significant correlations between the enzymes using Pearson's correlation test.
Conclusion: The ALP and LDH salivary enzymes activity is affected by mechanical forces generated by monobloc activator and these enzymes activities can also be increased during the rapid growth phase of childhood such as late infancy and early puberty where the age of subjects was selected in the current study.
Clinical significance: The determination of ALP and LDH salivary enzymes activities during the skeletal maturity is crucial for the success of myofunctional monobloc treatment; therefore, saliva can be used as a noninvasive diagnostic tool for determination of chemical biomarkers for detection of bone remodeling process during myofunctional monoblock treatment Keywords: Alkaline phosphatase (ALP), Lactate dehydrogenase (LDH), Monoblock, Orthodontic force, Salivary levels.