Single-Molecule-Based Electroluminescent Device as Future White Light Source

ACS Appl Mater Interfaces. 2019 Jan 30;11(4):4084-4092. doi: 10.1021/acsami.8b17107. Epub 2019 Jan 16.

Abstract

During the last two decades, spectacular development of light-emitting diodes (LEDs) has been achieved owing to their widespread application possibilities. However, traditional LEDs suffer from unavoidable energy loss because of the down conversion of photons, toxicity due to the involvement of rare-earth materials in their production, higher manufacturing cost, and reduced thermal stability that prevent them from all-inclusive applications. To address the existing challenges associated with current commercially available white LEDs, herein, we report a broad-band emission originating from an intrinsic lanthanide-free single-molecule-based LED. Self-assembly of a butterfly-shaped strontium-based compound {[Sr(H2btc)2(MeOH)(H2O)2]·2H2O} (1) was achieved through the reaction of Sr(NO3)2 with 1,2,3-benzenetricarboxylic acid hydrate (1,2,3-H3btc) under hydrothermal conditions. A white LED based on this single molecule exhibited a remarkable broad-band luminescence spectrum with Commission Internationale de l'Eclairage (CIE) coordinates at (0.33, 0.32) under 30 mA current injection. Such a broad luminescence spectrum can be attributed to the simultaneous existence of several emission lines originating from the intramolecular interactions within the structure. To further examine the nature of the observed transitions, density functional theory (DFT) calculations were carried out to explore the geometric and electronic properties of the complex. Our study thus paves the way toward a key step for developing a basic understanding and the development of high performance broad-band light-emitting devices with environment-friendly characteristics based on organic-inorganic supramolecular materials.

Keywords: WLEDs; electroluminescence; photoluminescence; single molecule; strontium.