Precise regulation of Hox gene activity is essential to achieve proper control of animal embryonic development and to avoid generation of a variety of malignancies. This is a multilayered process, including complex polycistronic transcription, RNA processing, microRNA repression, long noncoding RNA regulation and sequence-specific translational control, acting together to achieve robust quantitative and qualitative Hox protein output. For many such mechanisms, the Hox cluster gene network has turned out to serve as a paradigmatic model for their study. In this review, we discuss current knowledge of how the different layers of post-transcriptional regulation and the production of a variety of noncoding RNA species control Hox output, and how this shapes formation of developmental systems that are reproducibly patterned by complex Hox networks.