Background: Although several researches investigated Default Mode Network (DMN) alterations in individuals with anxiety disorders, up to now no studies have investigated DMN functional connectivity in non-clinical individuals with high-trait-anxiety using quantitative electroencephalography (EEG). Here, the main aim was to extend previous findings investigating the association between trait anxiety and DMN EEG functional connectivity.
Methods: Twenty-three individuals with high-trait-anxiety and twenty-four controls were enrolled. EEG was recorded during 5 min of resting state (RS). EEG analyses were conducted by means of the exact Low-Resolution Electromagnetic Tomography software (eLORETA).
Results: Compared to controls, individuals with high-trait-anxiety showed a decrease of theta connectivity between right medial prefrontal cortex (mPFC) and right posterior cingulate/retrosplenial cortex. A decrease of beta connectivity was also observed between right mPFC and right anterior cingulate cortex. Furthermore, DMN functional connectivity strength was negatively related with STAI-T total score (i.e., lower connectivity was associated with higher trait anxiety), even when controlling for potential confounding variables (i.e., sex, age, and general psychopathology).
Limitations: Small sample size makes it difficult to draw definitive conclusions. Furthermore, we did not assess state variation of anxiety, which make our interpretation specific to trait anxiety.
Conclusions: Taken together, our results suggest that high-trait-anxiety individuals fail to synchronize DMN during RS, reflecting a possible top-down cognitive control deficit. These results may help in the understanding of the individual differences in functional brain networks associated with trait anxiety, a crucial aim in the prevention and in the early etiology understanding of clinical anxiety and related sequelae.
Keywords: Default mode network; EEG functional connectivity; Psychopathology; Trait anxiety; eLORETA.
Copyright © 2018 Elsevier B.V. All rights reserved.