The compound 1-O-methyl chrysophanol (OMC) which belongs to a class of hydroxyanthraquinones was isolated from Amycolatopsis thermoflava strain SFMA-103 and studied for their anti-diabetic properties. OMC was evaluated as an anti-diabetic agent based on in silico studies which initially predicted the binding energy with α-amylase (-188.81 KJ mol-1) and with α-glucosidase (70.53 KJ mol-1). Further, these results were validated based on enzyme inhibition assays where OMC demonstrated enzyme inhibitory activity towards α-amylase (IC50 3.4 mg mL-1) and α-glucosidase (IC50 38.49 μg mL-1). To confirm the anti-diabetic activity, in vivo studies (oral dose in Wistar rats) revealed that OMC inhibited significantly the increase in glucose concentration at 100 mg/kg as compared to starch control (p < 0.05). Further, to understand the safety of OMC as a therapeutic agent, the genotoxic analysis was performed in both in vitro Chinese Hamster Ovary cells (250, 500, and 1000 µM/mL) and in vivo Swiss albino mice (250, 500, and 1000 mg/kg). In vitro results showed that OMC concentration of up to 250 µM/mL did not elicit significant changes in CAs, MI, and MN counts in CHO cells. Similarly, in mice experiments (i.p. injection), no significant changes in CAs, MI, and MN induction were observed till 500 mg/kg of OMC when compared with chrysophanic acid (Cy) (200 mg/kg). In addition, mice that received the lowest dose of OMC (250 mg/kg) did not show any histological changes in liver, kidney, and heart. The study concluded that five times higher therapeutic dose (100 mg/kg) of OMC can be utilized against hyperglycemia with no genotoxic effects.
Keywords: Anti-hyperglycemic; chromosomal aberration; chrysophanic acid; docking; micronucleus; mitotic index.