Our laboratory has previously shown in an ovine model of pregnancy that abnormal elevations in maternal cortisol during late gestation lead to increased fetal cardiac arrhythmias and mortality during peripartum. Furthermore, transcriptomic analysis of the fetal heart suggested alterations in TCA cycle intermediates and lipid metabolites in animals exposed to excess cortisol in utero. Therefore, we utilized a sheep model of pregnancy to determine how chronic increases in maternal cortisol alter maternal and fetal serum before birth and neonatal cardiac metabolites and lipids at term. Ewes were either infused with 1 mg·kg-1·day-1 of cortisol starting at gestational day 115 ( n = 9) or untreated ( n = 6). Serum was collected from the mother and fetus (gestational day 125), and hearts were collected following birth. Proton nuclear magnetic resonance (1H-NMR) spectroscopy was conducted to measure metabolic profiles of newborn heart specimens as well as fetal and maternal serum specimens. Mass spectrometry was conducted to measure lipid profiles of newborn heart specimens. We observed alterations in amino acid and TCA cycle metabolism as well as lipid and glycerophospholipid metabolism in newborn hearts after excess maternal cortisol in late gestation. In addition, we observed alterations in amino acid and TCA cycle metabolites in fetal but not in maternal serum during late gestation. These results suggest that fetal exposure to excess maternal cortisol alters placental and fetal metabolism before birth and limits normal cardiac metabolic maturation, which may contribute to increased risk of peripartum cardiac arrhythmias observed in these animals or later life cardiomyopathies.
Keywords: cortisol; fetus; heart; metabolomics; newborn.