MicroRNA miR-24-3p Reduces Apoptosis and Regulates Keap1-Nrf2 Pathway in Mouse Cardiomyocytes Responding to Ischemia/Reperfusion Injury

Oxid Med Cell Longev. 2018 Dec 2:2018:7042105. doi: 10.1155/2018/7042105. eCollection 2018.

Abstract

In recent years, microRNAs (miRNAs) have received increasing attention for their role in ischemia/reperfusion injury (I/RI), and many miRNAs have been demonstrated to play a very important role in cardiac I/RI. The miRNA miR-24-3p is a tumor suppressor that regulates multiple tumors; however, it remains unclear whether the expression level of miR-24-3p is altered in cardiac cells under I/RI. In this study, we used mouse primary cardiomyocytes and the H9C2 cardiomyocyte cell line to perform in vitro stimulated ischemia/reperfusion (SI/R) and then detected miR-24-3p expression level using quantitative real-time PCR (qRT-PCR). We discovered that the expression of miR-24-3p was significantly increased in cardiomyocytes following SI/R, and that the miR-24-3p level was inversely correlated to the ischemia marker HIF-1a. Furthermore, we transfected cardiomyocytes with miR-24-3p mimic or inhibitor to explore the role of miR-24-3p in cardiomyocyte ischemia/reperfusion injury in vitro. We performed flow cytometry to detect the apoptotic rate of H9C2 cardiomyocytes and found that the transfection of miR-24-3p mimic resulted in the decrease of the apoptosis rate of cardiomyocytes after SI/R, whereas the transfection of miR-24-3p inhibitor increased the number of apoptotic cardiomyocytes. These data suggest that the overexpression of miR-24-3p could reduce in vitro myocardial cell apoptosis induced by I/R injury. Finally, we applied the dual luciferase reporter gene system to verify whether miR-24-3p targets the Keap1 gene, and found that the luciferase signal intensity from a vector carrying the Keap1 wild-type reporter gene was significantly reduced after transfection with miR-24-3p mimic. The Keap1 protein level was also reduced following the transfection of miR-24-3p. The results from this study suggest a novel function of miR-24-3p in protecting cardiomyocytes from ischemia/reperfusion injury by the activation of the Nrf2-Keap1 pathway.

MeSH terms

  • Animals
  • Apoptosis / physiology
  • Kelch-Like ECH-Associated Protein 1 / genetics
  • Kelch-Like ECH-Associated Protein 1 / metabolism*
  • Mice
  • Mice, Inbred C57BL
  • MicroRNAs / genetics
  • MicroRNAs / metabolism*
  • Myocardial Reperfusion Injury / genetics
  • Myocardial Reperfusion Injury / metabolism*
  • Myocardial Reperfusion Injury / pathology*
  • Myocytes, Cardiac / metabolism*
  • Myocytes, Cardiac / pathology*
  • NF-E2-Related Factor 2 / metabolism*
  • Transfection

Substances

  • Keap1 protein, mouse
  • Kelch-Like ECH-Associated Protein 1
  • MicroRNAs
  • Mirn24 microRNA, mouse
  • NF-E2-Related Factor 2
  • Nfe2l2 protein, mouse