PopCluster: an algorithm to identify genetic variants with ethnicity-dependent effects

Bioinformatics. 2019 Sep 1;35(17):3046-3054. doi: 10.1093/bioinformatics/btz017.

Abstract

Motivation: Over the last decade, more diverse populations have been included in genome-wide association studies. If a genetic variant has a varying effect on a phenotype in different populations, genome-wide association studies applied to a dataset as a whole may not pinpoint such differences. It is especially important to be able to identify population-specific effects of genetic variants in studies that would eventually lead to development of diagnostic tests or drug discovery.

Results: In this paper, we propose PopCluster: an algorithm to automatically discover subsets of individuals in which the genetic effects of a variant are statistically different. PopCluster provides a simple framework to directly analyze genotype data without prior knowledge of subjects' ethnicities. PopCluster combines logistic regression modeling, principal component analysis, hierarchical clustering and a recursive bottom-up tree parsing procedure. The evaluation of PopCluster suggests that the algorithm has a stable low false positive rate (∼4%) and high true positive rate (>80%) in simulations with large differences in allele frequencies between cases and controls. Application of PopCluster to data from genetic studies of longevity discovers ethnicity-dependent heterogeneity in the association of rs3764814 (USP42) with the phenotype.

Availability and implementation: PopCluster was implemented using the R programming language, PLINK and Eigensoft software, and can be found at the following GitHub repository: https://github.com/gurinovich/PopCluster with instructions on its installation and usage.

Supplementary information: Supplementary data are available at Bioinformatics online.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Algorithms
  • Ethnicity*
  • Genome-Wide Association Study*
  • Humans
  • Programming Languages
  • Software
  • Thiolester Hydrolases

Substances

  • USP42 protein, human
  • Thiolester Hydrolases