9.2%-efficient core-shell structured antimony selenide nanorod array solar cells

Nat Commun. 2019 Jan 10;10(1):125. doi: 10.1038/s41467-018-07903-6.

Abstract

Antimony selenide (Sb2Se3) has a one-dimensional (1D) crystal structure comprising of covalently bonded (Sb4Se6)n ribbons stacking together through van der Waals force. This special structure results in anisotropic optical and electrical properties. Currently, the photovoltaic device performance is dominated by the grain orientation in the Sb2Se3 thin film absorbers. Effective approaches to enhance the carrier collection and overall power-conversion efficiency are urgently required. Here, we report the construction of Sb2Se3 solar cells with high-quality Sb2Se3 nanorod arrays absorber along the [001] direction, which is beneficial for sun-light absorption and charge carrier extraction. An efficiency of 9.2%, which is the highest value reported so far for this type of solar cells, is achieved by junction interface engineering. Our cell design provides an approach to further improve the efficiency of Sb2Se3-based solar cells.

Publication types

  • Research Support, Non-U.S. Gov't