Purpose: We tested the hypothesis that lateralized hemispheric glucose metabolism may have diagnostic implications in Alzheimer's disease (AD) and mild cognitive impairment (MCI).
Methods: We performed FDG-PET/CT in 23 patients (mean age 63.7 years, range 50-78, 17 females) diagnosed with AD (n = 15) or MCI (n = 8) during a six-month period in 2014. Ten neurologically healthy individuals (HIs) (mean age 62.5 years, range 43-75, 5 females) served as controls. A neuroimaging expert provided visual assessment of diaschisis. The total hemispheric glucose metabolism ratio (THGr) was calculated, and with area-under the curve of receiver operating characteristics (AUC-ROC) we generated a "Network Diaschisis Test (NDT)".
Results: The qualitative detection of cerebral (Ce) and cerebellar (Cb) diaschisis was 7/15 (47%), 0/8 (0%), and 0/10 (0%) in AD, MCI, and HI groups, respectively. Median cerebral THGr was 0.68 (range 0.43-0.99), 0.86 (range 0.64-0.98), and 0.95 (range 0.65-1.00) for AD, MCI, and HI groups, respectively (p = 0.04). Median cerebellar THGr was, respectively, 0.70 (range 0.18-0.98), 0.70 (range 0.48-0.81), and 0.84 (range 0.75-0.96) (p = 0.0138). A positive NDT yielded a positive predictive value of 100% for the presence of AD or MCI and a 86% negative predictive value for healthy brain. Moreover, the diagnostic manifestation of THGr between MCI and AD led to a positive predictive value of 100% for AD, but a negative predictive value of 42.9% for MCI.
Conclusion: Patients with AD or MCI had more pronounced diaschisis, lateralized hemispheric glucose metabolism and lower THGr compared to healthy controls. The NDT distinguished AD and MCI patients from HIs, and AD from MCI patients with a high positive predictive value and moderate and low negative predictive values. THGr can be a straightforward source of investigating neuronal network diaschisis in AD and MCI and in other cerebral diseases, across institutions.
Keywords: Alzheimer’s disease; Diaschisis; FDG-PET/CT; Mild cognitive impairment; Neuronal network.