Properties of particulate matter and gaseous pollutants in Shandong, China: Daily fluctuation, influencing factors, and spatiotemporal distribution

Sci Total Environ. 2019 Apr 10:660:384-394. doi: 10.1016/j.scitotenv.2019.01.026. Epub 2019 Jan 4.

Abstract

Characteristics of the spatial and temporal distribution of air pollutants may reveal the cause of air pollution, especially for large regions where the anthropogenic pollutant emission is concentrated. This study addresses this issue by focusing on Shandong province, which has the highest air pollutant emissions in China. First, the spatial and temporal variation characteristics of the observed concentrations of conventional pollutants are analyzed in detail. The most prominent indicator of the problem (PM2.5), was selected as the key analytical object. On the spatial scale, the Multivariate Moran model was used to identify factors affecting the spatial distribution of PM2.5. On the time scale, wavelet analysis was used to explore the fluctuation characteristics of PM2.5 at different time periods. Results show that there are significant regional differences in pollutant concentration within Shandong province. The concentration of particulate matter and gaseous pollutants in western and northern Shandong is significantly higher than eastern Shandong. The average concentrations of PM2.5, PM10, SO2 and NO2 were highest in winter and lowest in summer, whereas concentration of O3 peaked in summer. For PM2.5, the annual mean concentration has a significant spatial correlation with SO2 emission, GDP per capita, population density and energy consumption per unit of GDP; in addition, the correlation between different regions and various indices is different. On the time scale, the fluctuation energy of PM2.5 concentrated in Dezhou and Liaocheng is the strongest on December 18 and 19, 2015. The inversion temperature has a strong influence on the daily variation of PM2.5 concentration. The formation and evolution of atmospheric pollution, therefore, can be explored by combining the temporal and spatial distribution of pollutants, providing a comprehensive analytical method for atmospheric pollution in different regions.

Keywords: Air particulate matter and other pollutants; China; Daily fluctuations; Temporal and spatial distribution.