Background: In a previous study on ex vivo, static cardiac datasets, we investigated the benefits of performing partial volume correction (PVC) in cardiac 18F-Fluorodeoxyglucose(FDG) PET datasets. In the present study, we extend the analysis to in vivo cardiac datasets, with the aim of defining which reconstruction technique maximizes quantitative accuracy and, ultimately, makes PET a better diagnostic tool for cardiac pathologies.
Methods: In vivo sheep datasets were acquired and reconstructed with/without motion correction and using several reconstruction algorithms (with/without resolution modeling, with/without non-anatomical priors). Corresponding ex vivo scans of the excised sheep hearts were performed on a small-animal PET scanner (Siemens Focus 220, microPET) to provide high-resolution reference data unaffected by respiratory and cardiac motion. A comparison between the in vivo cardiac reconstructions and the corresponding ex vivo ground truth was performed.
Results: The use of an edge-preserving prior (Total Variation (TV) prior in this work) in combination with motion correction reduces the bias in absolute quantification when compared to the standard clinical reconstructions (- 0.83 vs - 3.74 SUV units), when the end-systolic gate is considered. At end-diastole, motion correction improves absolute quantification but the PVC with priors does not improve the similarity to the ground truth more than a regular iterative reconstruction with motion correction and without priors. Relative quantification was not influenced much by the chosen reconstruction algorithm.
Conclusions: The relative ranking of the algorithms suggests superiority of the PVC reconstructions with dual gating in terms of overall absolute quantification and noise properties. A well-tuned edge-preserving prior, such as TV, enhances the noise properties of the resulting images of the heart. The end-systolic gate yields the most accurate quantification of cardiac datasets.
Keywords: Cardiac PET; Motion correction; Partial volume correction; Quantification.