To understand the ecosystem dynamics that underpin the year-round presence of a large generalist consumer, the Bryde's whale (Balaenoptera edeni brydei), we use a DNA metabarcoding approach and systematic zooplankton surveys to investigate seasonal and regional changes in zooplankton communities and if whale diet reflects such changes. Twenty-four zooplankton community samples were collected from three regions throughout the Hauraki Gulf, New Zealand, over two temperature regimes (warm and cool seasons), as well as 20 samples of opportunistically collected Bryde's whale scat. Multi-locus DNA barcode libraries were constructed from 18S and COI gene fragments, representing a trade-off between identification and resolution of metazoan taxa. Zooplankton community OTU occurrence and relative read abundance showed regional and seasonal differences based on permutational analyses of variance in both DNA barcodes, with significant changes in biodiversity indices linked to season in COI only. In contrast, we did not find evidence that Bryde's whale diet shows seasonal or regional trends, but instead indicated clear prey preferences for krill-like crustaceans, copepods, salps and ray-finned fishes independent of prey availability. The year-round presence of Bryde's whales in the Hauraki Gulf is likely associated with the patterns of distribution and abundance of these key prey items.