Human beings are supposed to possess an approximate number system (ANS) dedicated to extracting and representing approximate numerical magnitude information as well as an object tracking system (OTS) for the rapid and accurate enumeration of small sets. It is assumed that the OTS and the ANS independently contribute to the acquisition of more elaborate numerical concepts. Chinese children have been shown to exhibit more elaborate numerical concepts than their non-Chinese peers, but it is still an open question whether similar cross-national differences exist with regard to the underlying systems, namely the ANS and the OTS. In the present study, we investigated this question by comparing Chinese and German preschool children with regard to their performance in a non-symbolic numerical magnitude comparison task (assessing the ANS) and in an enumeration task (assessing the OTS). In addition, we compared children's counting skills. To ensure that possible between-group differences could not be explained by differences in more general performance factors, we also assessed children's reasoning ability and processing speed. Chinese children showed a better counting performance and a more accurate performance in the non-symbolic numerical magnitude comparison task. These differences in performance could not be ascribed to differences in reasoning abilities and processing speed. In contrast, Chinese and German children did not differ significantly in the enumeration of small sets. The superior counting performance of Chinese children was thus found to be reflected in the ANS but not in the OTS.
Keywords: approximate number system; counting; cross-national comparison; preschool; subitizing.