Ce-containing bioactive glasses are known to decrease reactive oxygen activities inside the body. That is because of their excellent catalytic activities which come from the fast interchange of Ce3+/Ce4+ oxidation states. This research was mainly aimed at preparing new Ce-doped nano-bioactive glasses based on 60SiO2-(10-x)B2O3-25CaO-5P2O5-xCeO2, in mole% (x = 0 and 5 mol%) as multifunctional bone fillings. Moreover, the glasses were used as a delivery system for ciprofloxacin to intensely solve the bone infection complications. Nevertheless, there were no previous works studied of the nature immersing solution effect on the drug release behavior from Ce-doped nano-bioactive glass carriers. Therefore, phosphate-free and phosphate-containing buffer solutions with/without superoxide species (H2O2) were used to investigate the efficacy of this drug delivery system in different environment. The results showed that Ce addition enhanced the formation of apatite layer and cell viability. Moreover, the percentage of released drug was apparently affected by the glass composition and nature of soaking fluid, specifically, in the media containing superoxide species (H2O2). In conclusion, the prepared Ce-doped glass nanoparticles illustrated multifunctional bone filling material, but when it intended to be utilized as a drug delivery system, the nature of surrounding medium have to be taken into consideration.