Goose parvovirus (GPV) is one of the most serious viral pathogens in goslings. Recently, a new pathogen to the Chinese mainland-duck-origin novel goose parvovirus (N-GPV)-was found to be 90.8-94.6% identical to the nucleotide sequence of GPV, and typically causes growth disorders and high infection rates in meat ducks. The spread of both of these viruses hinders the healthy development of the waterfowl breeding industry. In this study, recombinase polymerase amplification (RPA) was combined with a vertical flow (VF) visualization strip to develop a universal assay for the rapid detection of GPV and N-GPV. A set of specific primers and probes were designed to target the VP3 gene. Detection was possible at a constant temperature of 37 °C within 5-10 min. The assay successfully detected GPV and N-GPV with high-specificity and did not exhibit cross-reactivity with other waterfowl viruses and bacteria. The analytical sensitivity of the GPV-RPA-VF assay was 2 × 102 copies of GPV plasmid. Validation of the GPV-RPA-VF assay-using 60 samples from the field--confirmed 100% similarity between the results of GPV-RPA-VF and conventional qPCR. The results indicate that the GPV-RPA-VF assay was accurate, sensitive, and specific. This assay can be performed with minimal equipment and training to rapidly detect GPV and N-GPV during the early phase of an outbreak, especially when timely veterinary diagnoses are needed in the field and in rural areas.
Keywords: Goose parvovirus; Novel goose parvovirus; Recombinase polymerase amplification; Vertical flow visualization strip; Waterfowl.
Copyright © 2019 Elsevier B.V. All rights reserved.