Application of Next Generation Sequencing for Diagnostic Testing of Tree Fruit Viruses and Viroids

Plant Dis. 2017 Aug;101(8):1489-1499. doi: 10.1094/PDIS-03-17-0306-RE. Epub 2017 Jun 26.

Abstract

Conventional detection of viruses and virus-like diseases of plants is accomplished using a combination of molecular, serological, and biological indexing. These are the primary tools used by plant virologists to monitor and ensure trees are free of known viral pathogens. The biological indexing assay, or bioassay, is considered to be the "gold standard" as it is the only method of the three that can detect new, uncharacterized, or poorly characterized viral disease agents. Unfortunately, this method is also the most labor intensive and can take up to three years to complete. Next generation sequencing (NGS) is a technology with rapidly expanding possibilities including potential applications for the detection of plant viruses. In this study, comparisons are made between tree fruit testing by conventional and NGS methods, to demonstrate the efficacy of NGS. A comparison of 178 infected trees, many infected with several viral pathogens, demonstrated that conventional and NGS were equally capable of detecting known viruses and viroids. Comparable results were obtained for 170 of 178 of the specimens. Of the remaining eight specimens, some discrepancies were observed between viruses detected by the two methods, representing less than 5% of the specimens. NGS was further demonstrated to be equal or superior for the detection of new or poorly characterized viruses when compared with a conventional bioassay. These results validated both the effectiveness of conventional virus testing methods and the use of NGS as an additional or alternative method for plant virus detection.

MeSH terms

  • Fruit / virology
  • High-Throughput Nucleotide Sequencing
  • Plant Pathology*
  • Plant Viruses* / genetics
  • Viroids* / genetics