Blueberry anthocyanin (BA) have strong health benefits as an active natural antioxidant and perfluorooctanoic acid (PFOA) can result in oxidative stress in animals. In our study, the protective effects of BA against stress induced by PFOA was investigated in the planarian Dugesia japonica using oxidative stress biomarkers, ATP contents, ATPase activity, DNA methylation and mRNA expression. PFOA exposure could resulted in malondialdehyde production. At the same time, treatment with BA decreased the production of malondialdehyde in BA-exposed and co-treatment planarians. PFOA caused activities increase in glutathione peroxidase (GPx), glutathione S-transferase (GST) and activities decrease in glutathione reductase (GR). PFOA exposure decreased the GSH and ATP contents. Additionally, it increased the GSSG contents and ATPase activity. BA administration increased the activities of GPx, GST and GR in BA and co-treatment planarians. Meanwhile BA maintained the contents of ATP, ATPase activity, GSH and GSSG by alleviating PFOA toxicity. Moreover, PFOA and BA increased the contents of 5-methylcytosine and decreased 5-hydroxymethylcytosine in all group. In addition, PFOA and BA treated planarians significantly altered the expression of genes associated with above biochemical parameters. The results showed that the mRNA expression of gpx, Djgst, gr, Djnak and dnmt1 were significantly elevated in all groups. Alterations in the mRNA expression levels indicated a stress response to PFOA exposure and anthocyanin protection. These alterations regulated biomarkers of oxidative stress, energy metabolism and DNA methylation levels in planarians. These results indicate that BA attenuated PFOA-induced oxidative stress, energy metabolism, DNA methylation and gene expression disorders.
Keywords: DNA methylation; Dugesia japonica; Oxidative stress biomarkers; Perfluorooctanoic acid; mRNA expression.
Copyright © 2018 Elsevier Ltd. All rights reserved.