Huanglongbing (HLB), a recent worldwide spreading disease on citrus, was detected in July 2009 in Yucatan State of Mexico. The objective of this study was to evaluate the fit of diffusion and classic disease gradient models to large-scale HLB spatial data originated from initial foci to improve sampling, monitoring, and control strategies for Diaphorina citri, vector of Candidatus Liberibacter asiaticus (CLas), putative agent of HLB. Four transect routes were selected: Yuc-1, Yuc-2, QRoo-1, and QRoo-2, based on the directionality of the prevailing winds and foci location of HLB infected plants. In these routes, 35 sites, 5 to 20 km apart, were selected for monthly evaluation during a 12-month period. A 10-insect sample and disease incidence and severity of HLB, further confirmed by PCR, were assessed per site. Mexican lime was more vulnerable (67.5%) than sweet orange (14%). Also, leaf symptoms were mostly found with homogeneous distribution but rarely reaching 100% of the tree canopy during the 12-month period. The diffusion model provided the best fit among the family of time-gradient curves (r2 = 0.90 to 0.99) due to the flexibility of a three-parameter model. The gradients were well conformed to the model in a 25 to 82.6 km range, having the east-west direction the longest effect. Yuc-2 and QRoo-2 transects showed 82.6 and 43.9 km gradients with a diffusion coefficient (Do) of 0.15 and 0.09, respectively. This study constitutes the first quantitative evidence of the regional spread of CLas from a single focus and the application of a flexible model that improved the fit and allowed to better compare different gradients. These results are useful to determine the size of Regional Areas of Diaphorina citri Control (ARCO), a management program currently implemented in Mexico to combat HLB.