Stripe rust, caused by the pathogenic fungus Puccinia striiformis f. sp. tritici, is an important disease of wheat worldwide. A rapid and reliable detection of the pathogen in latent infected wheat leaves is useful for accurate and early forecast of outbreaks and timely application of fungicides for managing the disease. Using the previously reported primer pair Bt2a/Bt2b, a 362-bp amplicon was obtained from P. striiformis f. sp. tritici and a 486-bp amplicon was obtained from both P. triticina (the leaf rust pathogen) and P. graminis f. sp. tritici (the stem rust pathogen). Based on the sequence of the 362-bp fragment, two pairs of sequence characterized amplified region (SCAR) primers were designed. PSTF117/PSTR363 produced a 274-bp amplicon and TF114/TR323 produced a 180-bp amplicon from P. striiformis f. sp. tritici, whereas they did not produce any amplicon from P. triticina, P. graminis f. sp. tritici, or any other wheat-infecting fungi. The detection limit of PSTF117/PSTR363 was 1 pg/µl and TF114/TR323 was 100 fg/µl. Both SCAR markers could be detected in wheat leaves 9 h post inoculation. An SYBR Green RT-PCR method was also developed to detect P. striiformis f. sp. tritici in infected leaves with the detection limit of 1.0 fg DNA from asymptomatic leaf samples of 6 h after inoculation. These methods should be useful for rapid diagnosis and accurate detection of P. striiformis f. sp. tritici in infected wheat leaves for timely control of the disease.