Differentiating supraclavicular from gluteal adipose tissue based on simultaneous PDFF and T2 * mapping using a 20-echo gradient-echo acquisition

J Magn Reson Imaging. 2019 Aug;50(2):424-434. doi: 10.1002/jmri.26661. Epub 2019 Jan 25.

Abstract

Background: Adipose tissue (AT) can be classified into white and brown/beige subtypes. Chemical shift encoding-based water-fat MRI-techniques allowing simultaneous mapping of proton density fat fraction (PDFF) and T2 * result in a lower PDFF and a shorter T2 * in brown compared with white AT. However, AT T2 * values vary widely in the literature and are primarily based on 6-echo data. Increasing the number of echoes in a multiecho gradient-echo acquisition is expected to increase the precision of AT T2 * mapping.

Purpose: 1) To mitigate issues of current T2 *-measurement techniques through experimental design, and 2) to investigate gluteal and supraclavicular AT T2 * and PDFF and their relationship using a 20-echo gradient-echo acquisition.

Study type: Prospective.

Subjects: Twenty-one healthy subjects.

Field strength/sequence assessment: First, a ground truth signal evolution was simulated from a single-T2 * water-fat model. Second, a time-interleaved 20-echo gradient-echo sequence with monopolar gradients of neck and abdomen/pelvis at 3 T was performed in vivo to determine supraclavicular and gluteal PDFF and T2 *. Complex-based water-fat separation was performed for the first 6 echoes and the full 20 echoes. AT depots were segmented.

Statistical tests: Mann-Whitney test, Wilcoxon signed-rank test and simple linear regression analysis.

Results: Both PDFF and T2 * differed significantly between supraclavicular and gluteal AT with 6 and 20 echoes (PDFF: P < 0.0001 each, T2 *: P = 0.03 / P < 0.0001 for 6/20 echoes). 6-echo T2 * demonstrated higher standard deviations and broader ranges than 20-echo T2 *. Regression analyses revealed a strong relationship between PDFF and T2 * values per AT compartment (R2 = 0.63 supraclavicular, R2 = 0.86 gluteal, P < 0.0001 each).

Data conclusion: The present findings suggest that an increase in the number of sampled echoes beyond 6 does not affect AT PDFF quantification, whereas AT T2 * is considerably affected. Thus, a 20-echo gradient-echo acquisition enables a multiparametric analysis of both AT PDFF and T2 * and may therefore improve MR-based differentiation between white and brown fat.

Level of evidence: 2 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2019;50:424-434.

Keywords: MRI; PDFF mapping; T2* mapping; brown fat; fat spectrum; magnetic resonance imaging; white fat.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adipose Tissue / anatomy & histology*
  • Adult
  • Buttocks / anatomy & histology
  • Clavicle / anatomy & histology
  • Female
  • Humans
  • Magnetic Resonance Imaging / methods*
  • Male
  • Middle Aged
  • Prospective Studies
  • Reference Values
  • Young Adult