This paper describes a dual-directional shearography system to address the issue of two-dimensional characterization of the surface strain. A common-path configuration coupled with an additional light path is used to provide the shearing in two directions. One of the three interfering beams is shared by both directional shearograms to improve the light efficiency and enhance the robustness of the system. The two directional shearograms are carried by different spatial carriers to distinguish one from the other. The spatial carrier is introduced by the single-aperture-lens Wollaston prism configuration. Rather than the conventional method in which the aperture is fixed at the front focal point of the imaging lens, a general case is considered by introducing a variable distance between the aperture and the imaging lens. The influence of the aperture-lens distance on the spatial carrier is then analyzed, which enables the separate control of the shearing amount and the spatial carrier. Two types of dual-directional shearography are presented to demonstrate the feasibility and the flexibility of the system. Type I is the simultaneous dual lateral shearography in orthogonal directions, and Type II is the simultaneous lateral and radial shearography. The spatial carrier introduced by the single-aperture-lens Wollaston prism configuration is discussed, and a configuration in which the Wollaston prism and the aperture are located at different sides of the lens is recommended for further shearography applications.