Background: In this study, we aimed to investigate the expression and clinical significance of miR-145-5p and its tumor-suppressive effect in breast cancer patients.
Methods: We used luciferase reporter assay, real-time quantitative reverse transcription polymerase chain reaction and Western blot to identify sex-determining region Y-box2 (SOX2) as the target gene of miR-145-5p. Their expression levels in breast cancer tissues (n = 122) were detected by real-time quantitative polymerase chain reaction. We also applied 3-(4,5-dimethyl- 2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide assay and flow cytometry to reveal the effect of miR-145-5p on proliferation in breast cancer.
Results: miR-145-5p expression is downregulated in breast cancer tissues and negatively correlated with SOX2 expression. Decreased miR-145-5p expression was significantly associated with larger tumor size, distal metastasis, higher Ki67 expression level, and shorter overall survival. miR-145-5p inhibits breast cancer cell proliferation via targeting SOX2, and multivariate regression showed that both miR-145-5p and SOX2 were unfavorable prognostic factors.
Conclusions: miR-145-5p played a suppressive role in the proliferation of breast cancer cells by targeting SOX2, and miR-145-5p is a putative biomarker for risk assessment in patients with breast cancer.
Keywords: Biomarker; Breast cancer; Prognostic; SOX2; miR-145-5p.
Copyright © 2019 Elsevier Inc. All rights reserved.