We have developed a murine intravesical orthotopic human bladder cancer (mio-hBC) model for the establishment of superficial urothelial cell carcinomas. In this model we catheterize female atyhmic nude mice and pre-treat the bladder with poly-L-lysine for 15 minutes, followed by intravesical instillation of luciferase-transfected human UM-UC-3 cells. Cancer cells are quantified by bioluminescent imaging which has been validated by small animal ultrasound. Poly-L-lysine pre-treatment increased engraftment rate (84.4%) and resulted in faster growing tumors than trypsin pre-treatment. In addition, tumors respond through a decrease in growth and increase in apoptosis to chemotherapy with mitomycin C. Previous intravesical models utilized KU7 cells which have been later determined to be of non-bladder origin. They display markers consistent with HeLa cells, requiring a need for a true intravesical bladder model. Efficient engraftment and rapid superficial growth patterning of the human bladder tumor differentiate this in vivo orthotopic model from previous bladder models.
Keywords: Intravesical; bladder cancer; cell line; human model; murine; orthotopic; xenograft.