Mining the Nav1.7 interactome: Opportunities for chronic pain therapeutics

Biochem Pharmacol. 2019 May:163:9-20. doi: 10.1016/j.bcp.2019.01.018. Epub 2019 Jan 27.

Abstract

The peripherally expressed voltage-gated sodium NaV1.7 (gene SCN9A) channel boosts small stimuli to initiate firing of pain-signaling dorsal root ganglia (DRG) neurons and facilitates neurotransmitter release at the first synapse within the spinal cord. Mutations in SCN9A produce distinct human pain syndromes. Widely acknowledged as a "gatekeeper" of pain, NaV1.7 has been the focus of intense investigation but, to date, no NaV1.7-selective drugs have reached the clinic. Elegant crystallographic studies have demonstrated the potential of designing highly potent and selective NaV1.7 compounds but their therapeutic value remains untested. Transcriptional silencing of NaV1.7 by a naturally expressed antisense transcript has been reported in rodents and humans but whether this represents a viable opportunity for designing NaV1.7 therapeutics is currently unknown. The demonstration that loss of NaV1.7 function is associated with upregulation of endogenous opioids and potentiation of mu- and delta-opioid receptor activities, suggests that targeting only NaV1.7 may be insufficient for analgesia. However, the link between opioid-dependent analgesic mechanisms and function of sodium channels and intracellular sodium-dependent signaling remains controversial. Thus, additional new targets - regulators, modulators - are needed. In this context, we mine the literature for the known interactome of NaV1.7 with a focus on protein interactors that affect the channel's trafficking or link it to opioid signaling. As a case study, we present antinociceptive evidence of allosteric regulation of NaV1.7 by the cytosolic collapsin response mediator protein 2 (CRMP2). Throughout discussions of these possible new targets, we offer thoughts on the therapeutic implications of modulating NaV1.7 function in chronic pain.

Keywords: Chronic pain; Na(V)1.7; Non-opioids; Novel therapeutics; Protein-interactome.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Review

MeSH terms

  • Analgesics / therapeutic use*
  • Animals
  • Chronic Pain / drug therapy*
  • Chronic Pain / genetics
  • Chronic Pain / metabolism*
  • Humans
  • Intercellular Signaling Peptides and Proteins / genetics
  • Intercellular Signaling Peptides and Proteins / metabolism
  • NAV1.7 Voltage-Gated Sodium Channel / genetics
  • NAV1.7 Voltage-Gated Sodium Channel / metabolism*
  • Nerve Tissue Proteins / genetics
  • Nerve Tissue Proteins / metabolism

Substances

  • Analgesics
  • Intercellular Signaling Peptides and Proteins
  • NAV1.7 Voltage-Gated Sodium Channel
  • Nerve Tissue Proteins
  • SCN9A protein, human
  • collapsin response mediator protein-2