Harpin proteins are produced by plant-pathogenic Gram-negative bacteria and regulate bacterial pathogenicity by inducing plant growth and defence responses in non-hosts. HpaG-Xcm, a novel harpin protein, was identified from Xanthomonas citri pv. mangiferaeindicae, which causes bacterial black spot of mango. Here, we describe the predicted structure and functions of HpaG-Xcm and investigate the mechanism of heat resistance. The HpaG-Xcm amino acid sequence contains seven motifs and two α-helices, in the N- and C-terminals, respectively. The N-terminal α-helical region contains two heptads, which form the coiled-coil (CC) structure. The CC region, which is on the surface of HpaG-Xcm, forms oligomeric aggregates by forming hydrophobic interactions between hydrophobic amino acids. Like other harpins, HpaG-Xcm was heat stable, promoted root growth and induced a hypersensitive response (HR) and systemic acquired resistance in non-host plants. Subjecting HpaG-Xcm to high temperatures altered the gene expression induced by HpaG-Xcm in tobacco leaves, probably due to changes in the spatial structure of HpaG-Xcm. Phenotypic tests revealed that the high-temperature treatments reduced the HR and disease resistance induced by HpaG-Xcm but had little effect on growth promotion. These findings indicate that the stability of interactions between CC and plants may be associated with thermal stability of HpaG-Xcm.