Treatment of cancer-induced bone pain (CIBP) is challenging in clinics. Oxycodone is used to treat CIBP. However, the lack of understanding of the mechanism of CIBP limits the application of oxycodone. In this study, proteomic profiling of oxycodone-treated spinal dorsal cord of rats with CIBP was performed. Briefly, a total of 3519 proteins were identified in the Sham group; 3505 proteins in the CIBP group; and 3530 proteins in the CIBP-OXY treatment group. The 2-fold cut-off value was used as the differential protein standard for abundance reduction or increase (p < 0.05). Significant differences were found in the abundance of 16 proteins between Sham and CIBP group; 11 proteins in the CIBP group had increased abundance while 5 proteins had reduced abundance. Furthermore, fifteen proteins with differential abundance were identified between the CIBP group and the OXY group. Compared with the CIBP group, there were six increased abundances and nine reduced abundances in the OXY group. In addition, a reduced expression of ADP-ribosylation factor-like 6 binding factor 1 (Arl6ip-1), an endoplasmic reticulum protein that has an important role in cell conduction and material transport, was found in the CIBP group compared with the Sham group. Its expression increased after the administration of OXY. Proteomics results were further verified by Western-blot. Fluorescent staining revealed that Arl6ip-1 co-localized with spinal dorsal horn neurons, but not with astrocytes or microglia. Based on the observed results, we believe that Arl6ip-1 may be a potential drug target for OXY treatment of CIBP rats.
Keywords: ADP-ribosylation factor-like 6 binding factor 1; Cancer-induced bone pain; Oxycodone; Proteomics.
Copyright © 2019 Elsevier B.V. All rights reserved.