Introduction: Stem cells from the apical papilla (SCAPs) possess strong odonto/osteogenic differentiation potential. This study investigated the effect of cyclic adenosine monophosphate (cAMP) on odonto/osteogenic differentiation of SCAPs and the underlining interplay between cAMP and transforming growth factor beta 1 (TGF-β1).
Methods: SCAPs were stimulated with an activator of cAMP (forskolin) in the presence of either TGF-β1 or a TGF-β1 inhibitor. The amounts of calcium mineral deposition and alkaline phosphatase activity were determined. Quantitative real-time polymerase chain reaction was performed to elucidate cAMP on the TGF-β1-mediated odonto/osteogenic differentiation of SCAPs. The effect of cAMP on the phosphorylation of Smad2/Smad3 and extracellular-regulated kinase (ERK)/P38 induced by TGF-β1 was analyzed by Western blotting.
Results: Cotreatment with forskolin and a TGF-β1 inhibitor enhanced alkaline phosphatase activity and deposition of calcium minerals in SCAPs. Moreover, the TGF-β1 inhibitor synergized the effect of forskolin on the expression of type I collagen and runt-related transcription factor 2. The results of Western blotting revealed that forskolin attenuated the unregulated expression of the phosphorylation of Smad3 and ERK induced by TGF-β1, and a cAMP inhibitor (H89) antagonized this effect.
Conclusions: This study showed that cAMP signaling exerts its up-regulating effects on the odonto/osteogenic differentiation of SCAPs by interfering with TGF-β1 signaling via inhibiting Smad3 and ERK phosphorylation.
Keywords: Cyclic adenosine monophosphate; differentiation; stem cell; tissue engineering.
Copyright © 2018 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.