Four new donor-acceptor-acceptor (D-A-A) type molecules (DTCPB, DTCTB, DTCPBO, and DTCTBO), wherein benzothiadiazole or benzoxadiazole serves as the central A bridging triarylamine (D) and cyano group (terminal A), have been synthesized and characterized. The intramolecular charge-transfer character renders these molecules with strong visible light absorption and forms antiparallel dimeric crystal packing with evident π-π intermolecular interactions. The characteristics of the vacuum-processed photovoltaic device with a bulk heterojunction active layer employing these molecules as electronic donors combining C70 as electronic acceptor were examined and a clear structure-property-performance relationship was concluded. Among them, the DTCPB-based device delivers the best power conversion efficiency (PCE) up to 6.55% under AM 1.5 G irradiation. The study of PCE dependence on the light intensity indicates the DTCPB-based device exhibits superior exciton dissociation and less propensity of geminated recombination, which was further verified by a steady photoluminescence study. The DTCPB-based device was further optimized to give an improved PCE up to 6.96% with relatively high stability under AM 1.5 G continuous light-soaking for 150 h. This device can also perform a PCE close to 16% under a TLD-840 fluorescent lamp (800 lux), indicating its promising prospect for indoor photovoltaic application.
Keywords: D−A−A configuration; ambient light; device stability; organic photovoltaics; small-molecule donor; vacuum process.