Early diagnosis and early treatment are important factors in reducing colorectal cancer (CRC) metastasis and mortality. Volatile organic compounds (VOCs) released by the human body have great potential for use in clinical diagnosis and therapeutic monitoring for CRC. The aim of our study was to identify VOCs with high specificity and high sensitivity for CRC and to provide a method for early diagnosis of CRC. Gas chromatography-mass spectrometry (GC-MS) was utilized to analyze metabolites in both the in vivo and in vitro experimental groups. In vivo, VOCs were analyzed in the blood of mice after cell inoculation and tumor resection. In vitro experiments were performed by comparing changes in VOCs in an HCoEpiC cell group, control group, SW620 cell group and Arsenic trioxide + SW620 group. We observed changes in VOCs in a series of CRC SW620 cells in vivo and in vitro. Among these changes, we found that the concentrations of 8 substances, including acetone, increased with tumor growth. Nine substances were found to be significantly elevated in the SW620 cancer cell group compared with the other groups. Only one substance was consumed by the tumor in both the in vivo and in vitro experiments. Our study showed that alkanes, lipids, alcohols, ketones, aldehyde, butylated hydroxytoluene (BHT) and hexamethylcyclotrisiloxane all existed at different levels in SW620 CRC cells compared to those in normal cells. We need more research to further confirm this hypothesis.
Keywords: Biomarkers; Colorectal cancer; Diagnosis; Gas chromatography–mass spectrometry; Solid phase microextraction; Volatile organic compounds.
Copyright © 2019 Elsevier B.V. All rights reserved.