Orexins, alternatively called hypocretins, are neuropeptides with crucial role in maintaining wakefulness. The orexin system is thought to mediate a coordinated defense response but thus far investigated from the flight, but never fight, response perspective. An HCRTR1 gene variant (rs2271933 G > A) leading to amino acid substitution (Ile408Val) has been associated with migraine and mood disorders. We genotyped, and assessed aggressive behaviour in both birth cohorts (n = 655 and 583) of the Estonian Children Personality Behaviour and Health Study (ECPBHS). Measures of aggressiveness were collected at age 25 or 33 and data on stressful life events (SLE-s) at age 15. Violations of traffic law were monitored in the samples of the Estonian Psychobiological Study of Traffic Behaviour. In both birth cohorts of the ECPBHS, the HCRTR1 the A/A homozygotes reported higher aggression in both Buss-Perry Aggression Questionnaire and the Life History of Aggression Interview. With either measure of aggressiveness, the HCRTR1 genotype effect was dependent on experience of SLE, the highest level of aggressiveness increase by environment being found in female A/A homozygotes. The HCRTR1 A/A homozygotes scored higher in the ANGER facet of the Affective Neuroscience Personality Scale, while such an effect on FEAR was found only in females. Male HCRTR1 A/A homozygotes were more likely to relapse into drunk driving of a passenger car, and in two independent samples the A-allele carriers were causing traffic accidents more often. Conclusively, self-report, interview, and traffic record data converge indicating that the HCRTR1 Ile408Val genotype is associated with aggressiveness and breach of law. This article is part of the Special Issue entitled 'Current status of the neurobiology of aggression and impulsivity'.
Keywords: Aggressiveness; Antisocial behaviour; Genotype; HCRTR1; Orexins.
Copyright © 2019 Elsevier Ltd. All rights reserved.