The circulating-tumor-cell (CTC) specific aptamer is believed to be a power recognition factor to realize clinical CTC assay. However, the limited sensing range is still one of the challenges in its real application. The porous-graphene-oxide (PGO) enhanced aptamer specific CTC sensing interface is studied on the platform of light-addressable-potentiometric-sensor (LAPS) to provide a clinical available method for CTC detection. The underlying mechanism of this sensing interface on LAPS is modeled and simulated. It is confirmed to be a promising candidate for CTC assay by the linear responding for 5-5000 spiked cells, as well as the satisfactory sensitivity for clinical samples.
Keywords: aptamer; circulating tumor cell; light addressable potentiometric sensor; porous graphene oxide; simulation.