Exercise intolerance in comorbid COPD and heart failure: the role of impaired aerobic function

Eur Respir J. 2019 Apr 18;53(4):1802386. doi: 10.1183/13993003.02386-2018. Print 2019 Apr.

Abstract

Impaired aerobic function is a potential mechanism of exercise intolerance in patients with combined cardiorespiratory disease. We investigated the pathophysiological and sensory consequences of a low change in oxygen uptake (ΔV'O2 )/change in work rate (ΔWR) relationship during incremental exercise in patients with coexisting chronic obstructive pulmonary disease (COPD) and systolic heart failure (HF).After clinical stabilisation, 51 COPD-HF patients performed an incremental cardiopulmonary exercise test to symptom limitation. Cardiac output was non-invasively measured (impedance cardiography) in a subset of patients (n=18).27 patients presented with ΔV'O2 /ΔWR below the lower limit of normal. Despite similar forced expiratory volume in 1 s and ejection fraction, the low ΔV'O2 /ΔWR group showed higher end-diastolic volume, lower inspiratory capacity and lower transfer factor compared to their counterparts (p<0.05). Peak WR and peak V'O2 were ∼15% and ∼30% lower, respectively, in the former group: those findings were associated with greater symptom burden in daily life and at a given exercise intensity (leg discomfort and dyspnoea). The low ΔV'O2 /ΔWR group presented with other evidences of impaired aerobic function (sluggish V'O2 kinetics, earlier anaerobic threshold) and cardiocirculatory performance (lower oxygen pulse, lower stroke volume and cardiac output) (p<0.05). Despite similar exertional hypoxaemia, they showed worse ventilatory inefficiency and higher operating lung volumes, which led to greater mechanical inspiratory constraints (p<0.05).Impaired aerobic function due to negative cardiopulmonary-muscular interactions is an important determinant of exercise intolerance in patients with COPD-HF. Treatment strategies to improve oxygen delivery to and/or utilisation by the peripheral muscles might prove particularly beneficial to these patients.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Aged
  • Exercise Tolerance*
  • Female
  • Heart Failure / complications*
  • Heart Failure / physiopathology*
  • Humans
  • Male
  • Middle Aged
  • Oxygen Consumption
  • Prospective Studies
  • Pulmonary Disease, Chronic Obstructive / complications*
  • Pulmonary Disease, Chronic Obstructive / physiopathology*